
Int. J. Vehicle Design, Vol. x, No. x, xxxx 1

1

Towards a Comprehensive Framework for
Simulation-based Vehicle Systems Design
Validation

M. Kokkolaras*, G. Hulbert and P.
Papalambros
Department of Mechanical Engineering
University of Michigan, Ann Arbor, Michigan
E-mail: {mk,hulbert,pyp}@umich.edu
*Corresponding author

Z. Mourelatos
Department of Mechanical Engineering
Oakland University, Oakland, Michigan
E-mail: mourelat@oakland.edu

R.-J. Yang

Ford Motor Company
Dearborn, Michigan
E-mail: ryang@ford.com

M. Brudnak and D. Gorsich
U.S. Army Tank Automotive Research and Development
Engineering Center, Warren, Michigan
E-mail: {mark.brudnak;david.gorsich}@us.army.mil

Abstract: We present an overview of our most recent and

ongoing research efforts to develop a comprehensive framework for

simulation-based vehicle design validation. Specifically we present

the three major building blocks of our framework, namely i) the

investigation of existing and introduction of appropriate validation

metrics for comparing the dynamic responses of vehicle systems

that consist of multivariate functional data, ii) the selection and

robust implementation of a Bayesian interval-based hypothesis testing

technique for quantifying the confidence in simulation models used

for design under uncertainty and iii) the development of a sequential

design optimization methodology with calibration-based validation to

address the inadequacy of current validation methods for design

optimization purposes. We conclude with a discussion of the techniques

being developed currently that will complete the proposed framework.
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1 Introduction

Computer modeling and simulation are the cornerstones of product design and
development in the ground vehicle industry. Computer-aided engineering (CAE)
tools have improved to the extent that virtual testing may lead to significant
reduction in prototype building and testing of vehicle designs. In order to make
this a reality, the need exists to assess confidence in the predictive capabilities
of simulation models. Therefore, validation of both experimental and simulation
results is critical.

Verification, validation and accreditation are very active areas of study in
industry, academia, government, and professional societies (see, e.g., [22, 2, 1, 3,
17, 4]). Particular challenges arise with data associated with dynamic systems such
as vehicles, as they typically appear in the form of multivariate time histories. The
ability to derive helpful conclusions based on comparisons between experimental
and computational multivariate functional data depends on utilizing appropriate
metrics and confidence quantification methods. Our research aims at developing a
comprehensive framework for validating simulation-based vehicle designs.

The first building block of a comprehensive simulation-based validation
framework consist of a set of appropriate metrics that can be used in making
quantitative assessments. Oberkampf and Barone list six properties that such
validation metrics should satisfy [16]. One of these properties dictates that an
effective metric for measuring the discrepancy between simulation model responses
represented by time histories is necessary to accomplish the first step of the
validation process. In [24], we reviewed existing error measures and metrics and
discussed their advantages and limitations. We then proposed a combination of
measures associated with three physically meaningful error characteristics (phase,
magnitude and slope), utilizing cross-correlation, L1 norms and algorithms such
as dynamic time warping to quantify the discrepancy between time histories. We
then showed how these measures can be used to build regression-based validation
metrics in cases where subject matter expert (SME) data are available.

Despite the usefulness of the measures proposed in [24], two challenges
remained unaddressed. The first one pertains to the general desire (especially of
industry practitioners) of having one single value that quantifies the confidence
(or not) in the agreement between experimental and computational (simulation)
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Validation 3
data, especially when there are more than one responses of interest (multivariate
data). The measures proposed in [24] can be combined to generate such a single
metric (using regression) only if SME data are available. The second issue is
linked to 4 of the remaining 5 properties advocated in [16], which call for useful
validation metrics to account for the uncertainties related to numerical error,
experimental error, experiment post-processing and the number of experiments
conducted. Because of these limitations, and for the sake of brevity, we will not
go into further detail of the validation metric in this paper. Instead, we will
address the aforementioned limitations of the deterministic validation metric by
adopting Bayesian hypothesis-testing methods for quantifying the confidence in the
agreement of multivariate experimental and computational data under uncertainty.

2 Bayesian methods for confidence quantification

Validation under uncertainty, within a probabilistic context, requires quantification
of the model output in terms of a statistical distribution and then effectively
comparing it with the experimental data that also follows a statistical distribution.
Statistical hypothesis testing is one approach to model validation under
uncertainty. Hills et al. considered the uncertainty in the experimental data
and used classical hypothesis testing method for model validation [10]. Zhang
et al. applied Bayesian hypothesis testing for the validation of limit state-based
reliability prediction models [25]. The fundamental difference between the classical
and the Bayesian approach is that the former draws confidence intervals of
prediction based on the statistical data analysis, while the latter assumes the
model parameters themselves are random and to follow a prior distribution,
usually based on the model developer’s knowledge. The prior distribution will be
updated once experimental data are available to obtain posterior distributions.
Rebba compared the Bayesian methods with other statistical validation metrics
and approaches in terms of ease of implementation, accuracy and adequacy
requirements [20]. Over the past few years, many other research groups have been
exploring Bayesian statistics to develop model validation methods.

Bayarri et al. referred to the discrepancy between the model prediction and the
physical test results (experimental observations) as model bias [6]. They believed
that accounting for this bias is the central issue of validation. As computer
model predictions and physical test results may not be obtainable for identical
inputs, they used Gaussian-based function approximations to the computer model
producing a scalar output (following the work of Sacks et al. [23]) and Bayesian
statistics for modeling the bias (following the work of Kennedy and O’Hagan [14]).
The key advantage of this framework is the estimation of tolerance bounds for the
model prediction, with the interpretation that there is a specified chance for the
observations in reality to lie within the specified range. Higdon et al. demonstrated
the implementation of this framework on different applications [9]. This framework
was extended to handle smooth functional data by considering time as an input
[5]. Complexity increases when the computer model and the physical tests produce
high dimensional output. To address this issue, Higdon et al. used principal
component analysis to reduce the dimensionality of the problem [8]. Following
the work of Bayarri et al. and Kennedy et al., Chen et al. used the Bayesian
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4 Kokkolaras et al.
methodology to improve simulation-based predictive models for engineering design
[7].

The research work described so far in this section provides methods to improve
the predictive capability of the computer model, whereas the research group of
Mahadevan uses the Bayesian methodology to quantify the agreement between the
computer model prediction and physical test results. Rebba and Mahadevan use
Bayesian hypothesis testing to infer how strongly the experimental data supports
the null hypothesis to accept the model as opposed to the alternative hypothesis to
reject the model [21]. A quantitative measure of confidence is derived using point
null hypothesis testing to handle both univariate and multivariate data. Within
the context of binary hypothesis testing for model validation, two hypotheses
Ho and Ha need to be tested, namely, the null hypothesis (Ho : µTEST − µCAE =
0) to accept the model and an alternative hypothesis (Ha : µTEST − µCAE 6= 0) to
reject the model. Jiang and Mahadevan used point null hypothesis testing for
model validation [11]. It should be remembered that a rejection of the point
null hypothesis would only mean that the CAE predictions and physical test
results are not exactly equal. This does not automatically render the model
useless, since, there is very low probability for the two numerical quantities to
be equal in practice. Rebba concluded that the interval-based hypothesis test
(Ho : |µTEST − µCAE| ≤ ε) provides more consistent model validation result than
point null hypothesis tests [20]. So, Jiang and Mahadevan formulated a Bayesian
interval-based hypothesis testing method for multivariate model validation [12],
which was further developed and used in the automotive industry [13].

2.1 Robust implementation of Bayesian confidence quantification method

Our comprehensive framework for simulation-based validation utilizes the Bayesian
methodology proposed in [11, 12, 13]. Our efforts have focused on a robust
implementation of this method by making two important adjustments: we have
introduced a method for calculating the variance of the multivariate data due
to the application of probabilistic principal component analysis (PPCA) and a
method for computing the appropriate width of the interval in the hypothesis
testing procedure that eventually determines the Bayesian factor based on which
confidence is calculated. Figure 1 presents a schematic of the implemented model
validation framework for dynamic systems. A brief outline of the framework is
provided in the remainder of this section by means of an example; for complete
details, refer to [18].

Field or test data, denoted as physical test, consists of time histories of one
or more data channels. Each data channel time history is scaled (normalized), so
that the maximum absolute values of the different data are similar in magnitude.
This procedure avoids biasing the validation framework based upon the magnitude
of the data responses. The scale factors used to scale each test data channel are
used to scale each of the corresponding CAE model data sets. PPCA is applied to
the normalized test data to produce a rank-ordered decomposition of the test data
based upon the percent of variability in the data. The user of the method can then
choose the number of principal components to retain in the test data reduction,
based upon the amount of information desired to be retained in the validation
process. The transformation matrix obtained by PPCA is applied to the CAE
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Figure 1 Bayesian confidence quantification procedure

model data to obtain a reduced set of CAE data. With both the reduced test and
CAE data sets, interval-based Bayesian hypothesis testing is applied and the Bayes
factor is calculated. As mentioned above, the choice of the interval width does
impact the Bayes factor value. We employ a calibration procedure that equates the
confidence value computed with the percent of variability captured by the included
principal components from the field test data. The calibration factor that produces
this equivalence is then used for the model validation assessment.

We now guide the reader through the application of the Bayesian-based
confidence quantification method using an example that considers a hybrid
military vehicle [19]. Figure 2 depicts a comparison of four data channels of
measured field data for four responses of interest compared to normalized CAE
data channels computed using a simulation model. Since we are dealing with
four responses of interest, PPCA yields three principal components. During the
construction of reduced data for the Bayesian-based confidence quantification,
the percent of captured information as the number of used principal components
increases is 62%, 86% and 99.9% for one, two and three principal components,
respectively.

The confidence in the model is defined as the probability of the null hypothesis
Ho : |µ| ≤ ε to be true, given the data D (which are the arithmetic difference
between the PPCA-reduced, mean-centered test and CAE data for all responses).
As is evident from the computations depicted in Figure 3, the threshold vector ε
has a significant impact on confidence quantification. Figure 4 illustrates the one-
dimensional version of the relation between the mean of the difference between the
computational and test data µ, the interval defined by ε, the (typically multivariate
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Figure 2 Comparison of field test and CAE model time histories (solid/red=test,

dashed/blue=CAE)

Figure 3 Interval-based hypothesis testing, Bayes factor computation and confidence
quantification

normal) distribution of the available data D and the Bayes factor BM for three
different cases. A model can be deemed acceptable if BM ≥ 1.

Subject matter expert (SME) opinion can be used to define ε. In the absence
of SME opinion, it becomes necessary to estimate ε as objectively as possible. For
this purpose, we define

ε = b
√
diag(Σ), (1)

where b is a calibration parameter and Σ is the variance of the multivariate
difference between the reduced test and computational data. Figure 5 illustrates
the parametric study of determining the appropriate value of the interval
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Validation 7

Figure 4 One-dimensional illustration of relation between interval-based hypothesis
testing and Bayes factor for three different cases

calibration parameter following the procedure outlined above that aligns β
with the amount of information used, i.e., principal components. As expected,

	  
Figure 5 Choosing calibration parameter value based upon setting percent of

information equal to confidence value for number of principal components

the calibration parameter value varies depending on the number of principal
components employed. Using these calibration parameter values.

Figure 6 provides the confidence values computed for data from two available
proving ground courseswhen using one, two and three principal components. The
largest confidence value for the CAE models is obtained for 86% of information,
that is, for two principal components. When three principal components were
considered, the noise associated with the third component resulted in a reduction
in model confidence. It is important to note that in all cases the confidence value is
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Figure 6 Confidence quantification for course 1 (left/blue) and course 2 (right/red)

as a function of amount of information used (i.e., number of principal
components)

below 50%, which suggests that the models should be rejected. In other words, the
models need more refinement and adjustment to provide acceptable comparisons
with the test data.

3 Validation and design

Computational models are not developed solely for the sake of single-point
analysis. The investment in the development of simulation models aims at a
return consisting of the ability to evaluate different designs under different
scenarios rapidly, i.e.. to conduct design optimization and robustness studies.
Model validation for design optimization purposes is a daunting task. Simulation
models can have a large amount of inputs. Simulation-based design optimization
requires that the model is valid in a big range of both design variables (for
design space exploration) and design parameters (as the variability in operating
conditions, which they represent, must be addressed for robustness). A simulation-
based design optimization process that uses a globally validated model, i.e., a
model that has been validated for the entire range of its inputs, will always yield
designs that will perform as predicted. This requires a vast amount of resources
to conduct multiple tests at each point of a sufficiently large set in the extremely
high-dimensional space spanned by the model inputs. Due to limited resources and
time constraints, current design practice uses simulation models for optimization
studies in large design spaces even though the models have been validated only
at a relatively small number of points, i.e., a relatively small subset of the design
space. Within this paradigm, simulation models are validated a-priori and globally,
and then used, without any change or update, throughout the design optimization
process.

This approach of a-priori global model validation for design optimization
purposes can compromise local accuracy and do not utilize available testing
resources effectively and efficiently. Numerical design optimization algorithms
(both gradient-based and derivative-free) create a sequence of design iterates;
validation is critical only for these iterates, and not for the entire design space.
Thus, we are developing a methodology for sequential, calibration-based validation
of the simulation model at, and in the vicinity of, the design candidates as they
are generated during the optimization process [15]. The next section summarizes
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Validation 9
our approach by means of a contrived toy example that illustrates interesting
features. The goal of such validation is confidence in the resulting design (as well
as the intermediate design iterates) rather than in the global performance of the
underlying simulation model. The proposed approach ensures local model accuracy
as the design optimization process progresses since model calibration is conducted
whenever necessary. We hypothesize that our approach utilizes available testing
resources more effectively as it determines the minimum amount of tests required
for validation in the targeted local domains.

3.1 Sequential design optimization with calibration-based validation

Consider a design optimization problem for which we have an initial design d and
test data for this design point. We use the Bayesian methodology described in
the previous section to quantify the confidence in the simulation model at this
design point given the available test data If this confidence C is greater or equal
to a (user-specified and problem-dependent) lowest acceptable value Cmin, then
we accept this design as locally valid and use it to solve the design optimization
problem within a local trust region. In doing so, we assume that the CAE model
is valid (i.e., C ≥ Cmin) in the entire local domain. Otherwise, we update the CAE
model by solving the calibration optimization problem

max
p

C(yCAE(d,p),yTEST(d)), (2)

where a set of model calibration parameters p is determined in order to maximize
C at the center of the local trust region domain; as described in the previous
sections, the confidence C depends on computational data yCAE (which are
a function of the design point d and the model calibration parameters p)
and the test data yTEST (which are a function only of the design point d).
If maxp∗ C(yCAE(d,p),yTEST(d)) < Cmin, where p∗ is the optimal solution of
Problem (2), we have the following options: i) terminate the design optimization
procedure recognizing that we have achieved a design that is not deemed valid due
to model limitations, ii) accept the model limitation and proceed acknowledging
that our confidence in the simulation model (and thus the design) is below our
acceptable limits, or iii) consider revisiting the model or replacing it with a higher-
fidelity one.

After solving the design optimization problem, there are two cases: If the
new optimal design d∗ lies within the local trust region, then the overall design
optimization problem is assumed converged to a valid design. If it lies on the
boundary of the local trust region. If the optimizer found after an optimization
within a local domain lies on the boundary of the local trust region, we i) set d←
d∗, ii) update the CAE model by solving Problem (2), iii) define a new local trust
region centered at d, and iv) conduct a new design optimization within the new
local trust region. This sequential optimization process using local trust regions is
repeated until the optimal is in the interior of the last local trust region. Note that
currently, the user needs to specify the size (and shape) of the local trust region
domain; we are working on a methodology that will define the size of the local
trust region domain based on a minimum number of tests to be conducted at its
center. Figure 7 illustrates the first iteration of the above described approach for
a two-dimensional case.

michailk
Text Box
UNCLASSIFIED



10 Kokkolaras et al.

	  

Figure 7 Schematic of sequential optimization with calibration-based validation for
two-dimensional design space

To illustrate the features of the sequential design optimization approach with
calibration-based validation, we contrived a toy example considering the cantilever
beam depicted in Figure 8 A finite element model was developed to predict the

	  
Figure 8 Cantilever beam of rectangular cross-section with tip point dynamic load

f(t)

lateral and rotational displacements along the length of the beam. To introduce
uncertainty, as well as artificial disagreement between the test and computational
data, we modified the cross-section of the beam near the fixed end boundary
condition, and used a torsional spring, whose stiffness was treated as a model
calibration parameter, to model the fixed end condition in the finite element model
(see Figure 9).

	  
Figure 9 Cantilever beam of rectangular cross-section for test and CAE; the test uses

a reduced cross-section close to the fixed end and the CAE model assumes a
pinned left end with a rotational spring stiffness
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Validation 11
The design optimization is formulated to minimize the mass of the beam with

respect to the cross-section dimensions subject to displacement constraints. The
discrepancy between tip displacement predictions and test data as a function of
time is plotted in Figure 10. It is obvious that the confidence in the simulation

	  

Figure 10 Comparison of tip displacement between test and CAE at initial design
before calibration

model cannot be high. Indeed, the confidence in the CAE model (and thus the
design) at the initial design point was found to be only 40%. After calibrating
the model by solving Problem (2) confidence increased to 98%. Figure 11 depicts
the confidence in the model as a function of the design variables before and after
calibration ate the initial design. We can see that if we were to use the model in
other areas of the design spaces, model confidence can decrease dramatically. This
demonstrates our previous discussion of the small value of a-priori, global model
validation.

	  

Figure 11 Confidence as a function of the design space

Figure 12 summarizes the sequential design optimization process with
calibration-based validation. As already mentioned, calibration was necessary at
the initial design. After that, 3 sequential optimizations were conducted within
local trust regions; the optimal solution of each of these lied on the boundary of
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Figure 12 Intermediate and final results of the sequential design optimization process
with calibration-based validation

the local trust region; the confidence value did not fall below the 80% acceptable
threshold for none of these optimizations, so calibration was not necessary. At
the 4th optimization, however, confidence decreased to 78%, so Problem (2)
was solved, the model was re-calibrated and confidence increased to 85%. The
subsequent design optimization converged to a design within the local trust region,
so the overall design optimization process was terminated successfully.

4 Summary

We have presented an overview of our most recent efforts towards the development
of a comprehensive validation framework for design of vehicle systems. We begun
our research work with evaluating existing measures for comparing functional data
(i.e., time histories) since such systems are dynamic with multiple time-dependent
responses and since comparison between computational and test data is the basis
of validation. After demonstrating several limitations of traditional measures, we
introduced a deterministic, three-component validation metric that can be used
in conjunction with subject matter expert data to build a scalar regression-based
validation models.

Recognizing that the issue of uncertainty in both tests and computational
models must be inevitably addressed, we proceeded to investigate the applicability
of Bayesian methods for design validation. After identifying the most promising
methodology, consisting of processing the available multivariate data through
probabilistic principal component analysis for efficient uncertainty treatment,
dimensionality reduction and significant feature (or information) extraction and
then quantifying confidence based on Bayesian interval-based hypothesis testing,
we developed a robust implementation by introducing a coherent variance
calculation method and a technique for determining the appropriate interval width
based on information content.

Lastly, we employed the implemented confidence quantification method
in a novel sequential design optimization with simultaneous calibration-based
validation approach. Our motivation was that typical a-priori global model
validation for design optimization is only adequate when unlimited resources are
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expended, which is obviously not the case due to limited resources and/or time
restrictions. We have demonstrated that the use of such models can lead to both
invalid and suboptimal results, and have shown that sequential optimization with
calibration-based (when necessary) validation can use resources and associated
information effectively.

Our current efforts focus on completing the comprehensive framework for
simulation-based design validation by developing the missing techniques for
determining the minimum amount of tests necessary at each stage of the sequential
method and the size and shape of the associated local trust regions. Optional
future work could be the development of a methodology that utilizes the data
and model calibration parameter values generated during the sequential process
to build models that can used for extrapolation in domains where data cannot be
obtained.
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